Competition between wild oat (Avena fatua) and yellow mustard (Sinapis alba) or canola (Brassica napus)

Weed Science ◽  
2002 ◽  
Vol 50 (5) ◽  
pp. 587-594 ◽  
Author(s):  
Oleg Daugovish ◽  
Donald C. Thill ◽  
Bahman Shafii
2018 ◽  
Vol 150 (5) ◽  
pp. 637-651 ◽  
Author(s):  
Lars Andreassen ◽  
Juliana Soroka ◽  
Larry Grenkow ◽  
Owen Olfert ◽  
Rebecca H. Hallett

AbstractTo determine resistance of Brassicaceae field crops to Contarinia Róndani (Diptera: Cecidomyiidae) midge complex (Contarinia nasturtii Kieffer and Contarinia undescribed species), field trials of two different host assemblages were undertaken near Melfort, Saskatchewan, Canada in 2014 and repeated in 2015. In both years the first midge adults appeared in early July, when most plants were starting to flower, and a second generation occurred in mid-August, past the period of crop susceptibility. In a trial studying 18 lines of six brassicaceous species, the lowest probability of midge injury was found on Camelina sativa (Linnaeus) Crantz lines in both years. No differences were found in the probability of midge injury among any of the 13 Brassica Linnaeus species lines tested, including commercial glyphosate-resistant and glufosinate-resistant Brassica napus Linnaeus canola lines, Ethiopian mustard (Brassica carinata Braun), brown or oriental mustard (Brassica juncea (Linnaeus) Czernajew), or Polish canola (Brassica rapa Linnaeus) lines. Probability of midge injury on Sinapis alba Linnaeus yellow mustard lines reached levels between those on Camelina sativa lines and those on Brassica lines. A second trial examining 14 current commercial glyphosate-resistant Brassica napus canola cultivars found no differences in susceptibility to midge feeding among any cultivars tested. More plants were damaged in 2015 in both studies, and damage reached maximum levels earlier in 2015 than in 2014.


2008 ◽  
Vol 88 (1) ◽  
pp. 239-245 ◽  
Author(s):  
Daniel W. Ross ◽  
Jack Brown ◽  
Joseph P. McCaffrey ◽  
Bradley L. Harmon ◽  
Jim B. Davis

Canola, yellow mustard and yellow mustard × canola hybrids were screened for resistance to Ceutorhynchus obstrictus (Marsham) in a series of greenhouse and laboratory choice tests. Tests were conducted using small and large cages designed to hold Brassica pods or whole plants, respectively, with ovipositing female C. obstrictus. Pods were examined for feeding punctures, eggs laid and exit holes that resulted from emerging larvae. All yellow mustard cultivars examined were highly resistant to C. obstrictus feeding and egg laying. In addition, hybrid lines were found with significantly reduced feeding punctures, oviposition, and exit holes compared with canola. A negative relationship was observed between total glucosinolate content of seed and C. obstrictus resistance; however, in both detached pod and whole plant choice tests, hybrids were identified with high seed glucosinolate content that were more susceptible than the most susceptible canola. The relatively poor association between total seed meal glucosinolate content and C. obstrictus resistance is highly important and plant breeders should be able to develop canola-quality oil and seed meal characteristics with improved C. obstrictus resistance using yellow mustard × canola hybrids. The effect of specific glucosinolate types on C. obstrictus resistance may be more complex than previously thought, and further research will be needed to better understand the relationship between specific glucosinolate types and resistance to C. obstrictus. Key words: Brassica napus, Sinapis alba, Ceutorhynchus obstrictus, cabbage seedpod weevil, insect resistance, glucosinolate


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1961
Author(s):  
Charles M. Geddes

Models of weed population demography are critical to understanding the long-term viability of management strategies. The driving factors of weed seedbank persistence are often underrepresented in demographic models due to the cumbersome nature of seedbank research. Simplification of weed seedbank dynamics may induce substantial error in model simulations. A soil bioassay was conducted to determine whether growth of different crop species, including wheat (Triticum aestivum L.), canola (Brassica napus L.), and field pea (Pisum sativum L.), differentially impact seed mortality of kochia [Bassia scoparia (L.) A.J. Scott], wild oat (Avena fatua L.), and volunteer canola in seven burial environments in western Canada. Weed seed survival after the 7 week burial period varied widely among burial environments (from 8% to 88% when averaged among weed and crop species), whereas growth of the different crop species had negligible impact on seedbank persistence. Among environments, wild oat seed survived the greatest (79%), followed by kochia (20%), and volunteer canola (6%). Weed seed survival was associated with soil physical properties (texture) and seed microsite characteristics (temperature), but not crop species or soil chemical properties. Overall, these data support the need for greater integration of soil and environmental parameters into models of weed population demography.


2002 ◽  
Vol 82 (4) ◽  
pp. 797-802 ◽  
Author(s):  
H. J. Beckie ◽  
F. A. Holm

It has been stated that soil residual herbicides, by controlling successive flushes of weeds, increase effective kill (efficacy) over the growing season, and thus impose a higher selection pressure for resistance in weeds than non-residual herbicides. To investigate this issue, the responses of wild oat to increasing rates of residual and non-residual herbicides in canola and wild oat recruitment in the following year were examined in a field study conducted in Saskatchewan, Canada, from 1997 to 2000. The rate-response curves of the wild oat variables indicated that efficacy of the soil residual herbicides, ethalfluralin and triallate, and of the non-residual herbicide, glufosinate, was generally lower than that of imazamox/imazethapyr (residual), sethoxydim, and glyphosate (non-residual). Emergence of wild oat in spring wheat (Triticum aestivum L.) grown in the following year did not differ among herbicides applied in the preceding crop year, nor was there a significant herbicide by rate interaction. The results suggest that the soil residual activity o f these herbicides does not strongly influence selection pressure, estimated by reduction in wild oat seed return in canola. Key words: Brassica napus, Avena fatua, selection pressure, herbicide resistance


2002 ◽  
Vol 82 (2) ◽  
pp. 473-480 ◽  
Author(s):  
E. Zand ◽  
H. J. Beckie

The competitiveness of three hybrid and three open-pollinated canola cultivars against two wild oat populations was determined under controlled environment conditions at two plant densities and five canola:wild oat ratios (100:0, 75:25, 50:50, 25:75, 0:100). Analysis of replacement series and derivation of relative crowding coefficients (RCC), based on shoot dry weight or leaf area, indicated that hybrid canola cultivars were twice as competitive than open-pollinated cultivars when weed interference was relatively high (i.e., high plant density and vigorous wild oat growth). Little difference in competitiveness among cultivar types was apparent when weed interference was lower. The results of this study suggest that hybrid canola cultivars may be best suited for use in an integrated weed management program, particularly for farmers of organic or low input cropping systems. Key words: Hybrid canola, Brassica napus, Avena fatua, replacement series, competition


Weed Science ◽  
2003 ◽  
Vol 51 (1) ◽  
pp. 102-109 ◽  
Author(s):  
Oleg Daugovish ◽  
Donald C. Thill ◽  
Bahman Shafii
Keyword(s):  
Wild Oat ◽  

2008 ◽  
Vol 88 (1) ◽  
pp. 267-270 ◽  
Author(s):  
Y. Gan ◽  
S. S. Malhi ◽  
S. A. Brandt ◽  
C. L. McDonald

Use of appropriate harvest management can minimize the yield loss of crucifer crops due to seed and pod shattering. This study determined the difference among five canola/mustard species in the degree of resistance to seed shattering and yield losses. Sinapis alba yellow mustard AC Base, Brassica juncea canola Amulet, Brassica juncea mustard Cutlass, Brassica rapa canola Hysyn, and Brassica napus canola InVigor 2663 were grown at Star City, Scott and Swift Current, SK, from 2004 to 2006. Seed yield was highest for napus canola (2146 kg ha-1), followed by juncea mustard (1971 kg ha-1) and juncea and rapa canola, while alba mustard (1547 kg ha-1) was the lowest. Straight combining compared with swathing resulted in 13% greater seed yield for juncea canola and juncea mustard, and 7% greater for rapa canola, while napus canola did not show yield difference between the two operation regimes. Under high shattering conditions, juncea mustard shed about 400 pods m-2, significantly greater than the four other species. Rapa canola had the lowest number of shed pods. Juncea mustard and napus canola had largest yield loss (about 7% of the total seed yield) during straight combining, followed by alba mustard (5%), and rapa and juncea canola (< 4%). Selection of shattering resistant species and use of straight combining can minimize seed yield losses in the production of crucifer oilseed crops. Key words: Brassica napus, Brassica rapa, Brassica juncea, Sinapis alba, swathing, straight–combine


Weed Science ◽  
1974 ◽  
Vol 22 (5) ◽  
pp. 476-480 ◽  
Author(s):  
Robert W. Neidermyer ◽  
John D. Nalewaja

The response of wheat (Triticum aestivum L.) and wild oat (Avena fatua L.) to barban (4-chloro-2-butynyl-m-chlorocarbanilate) was studied as influenced by plant morphology and air temperature after application. Growth of wheat and wild oat seedlings was reduced by barban at 0.3 μg and 0.6 μg applied to the first node, respectively. Barban application to the base and midpoint of the first leaf blade required a lower dose to reduce wild oat growth than wheat growth. Increased tillering occurred from barban injury to the main culm in wheat. Wheat and wild oat susceptibility to barban increased as the post-treatment temperature decreased from 32 to 10 C. Barban selectivity for wild oats in wheat was greater at 27 and 21 C than at 16 and 10 C.


Weed Science ◽  
1983 ◽  
Vol 31 (5) ◽  
pp. 693-699 ◽  
Author(s):  
Blaik P. Halling ◽  
Richard Behrens

Experiments were conducted with isolated protoplasts of wild oat (Avena fatuaL. # AVEFA) and isolated chloroplasts of wild oat and wheat (Triticum aestivumL.), to determine if the methyl sulfate salt of difenzoquat (1,2-dimethyl-3,5-diphenyl-1H-pyrazolium) might influence photoreactions in these species. Difenzoquat did not affect CO2fixation, uncoupled electron transport, or proton uptake. At concentrations of 0.5 mM and 1 mM, difenzoquat caused a slight, but statistically significant, inhibition of photophosphorylation. Experiments assaying coupled electron transport indicated that inhibition of photophosphorylation occurred not through uncoupling, but by an energy-transfer inhibition. This same effect was observed in isolated mitocondria of both species, with about 50% inhibition of state 3 respiration rates occurring with 10 μM difenzoquat. However, no important differentials were observed in the relative susceptibilities of wheat and wild oat mitochondria. Difenzoquat also functioned as a weak autooxidizing electron acceptor in photosynthetic electron transport. Therefore, difenzoquat-induced leaf chlorosis and necrosis may result from a bipyridilium-type electron acceptor activity if sufficient herbicide is absorbed.


Sign in / Sign up

Export Citation Format

Share Document